Volume 3 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
CHANG Ruoxin. Performance Prediction of Dew-point Evaporative Cooling Chiller Based on BP Neural Network[J]. Intelligent Building and Construction Machinery, 2021, 3(1): 50-52.
Citation: CHANG Ruoxin. Performance Prediction of Dew-point Evaporative Cooling Chiller Based on BP Neural Network[J]. Intelligent Building and Construction Machinery, 2021, 3(1): 50-52.

Performance Prediction of Dew-point Evaporative Cooling Chiller Based on BP Neural Network

  • Received Date: 2020-12-18
  • Rev Recd Date: 2021-01-20
  • Available Online: 2021-09-22
  • Publish Date: 2021-01-28
  • This paper aims at the design shortcomings of the traditional evaporative cooling chillers, such as the failure to take the actual operation of the chillers into full consideration, the complexity of the optimization design before mass production and the large cost input. The prediction model of dew point indirect evaporative cooler was established by using neural network to predict the nonlinear dynamic system, and the network model was trained and simulated.

     

  • loading
  • [1]
    黄翔,孙铁柱,汪超.蒸发冷却空调技术的诠释(1)[J].制冷与空调,2012,12(2):1-6

    +14.
    [2]
    黄翔.蒸发冷却空调技术发展动态[J].制冷,2009,28(1):19-25.
    [3]
    麦索特森科.用于露点蒸发冷却器的方法和板装置[P].中国:ZL02828060.1,2001-09-27.
    [4]
    黄童毅,何林,郭庆,等.基于BP神经网络的空调性能预测研究[J].环境技术,2019,37(4):100-103

    +114.
    [5]
    张峰,李苏泷.基于BP神经网络的建筑空调负荷预测[J].智能建筑与智慧城市,2019(7):34-35+41.

    [6]
    李朝阳.露点间接蒸发冷却空调系统的应用研究[D].西安:西安工程大学,2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (89) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return