Forecast of Traffi c Volume Based on the Grey Regression Combined Model
-
摘要: 交通量预测作为公路可行性研究的核心内容,对其进行精准预测是对交通运输规划与管理研究的基础。交通运输问题随着车辆的增多变得日益复杂,故交通量预测逐渐变成研究的热点问题。本文结合智能计算、回归分析及灰色模型等理论,通过优化 GM(1,1)模型,提出合理权重,结合回归模型和优化后的 GM(1,1)模型,构建了优化的交通量组合预测模型。最后,经过溧马高速实际数据的检验,验证了该模型能够有效提高交通量短时预测精度。Abstract: Traffic forecasting and accurate forecasting are central to highway feasibility studies and have important implications for traffic planning and management research. As the number of vehicles increases, transportation issues become more complex. A hot issue that theoretical researchers are concerned about is traffi c forecasting, as traffi c problems become more complex and the number of vehicles continues to grow. In this article, when optimizing a GM (1,1) model using regression analysis and gray model theory, we first combine intelligent calculations. Reasonable weights can be obtained by combining the regression model with the optimized GM (1,1) model. The establishment of a combination prediction model for linear traffi c volume is mainly based on the gray model and the regression model. The actual data testing is mainly done on the Lima highway, and this model can eff ectively improve the accuracy of short-term traffi c forecasts.
-
Key words:
- traffi c fl ow theory /
- regression analysis /
- GM model /
- combination modeling
-
[1] 张新天,罗晓辉.灰色理论与模型在交通量预测中的应用[J].公路,2001(8):4-7. [2] 王鹏,何荷.灰色理论在交通量预测中的应用[J].公路交通科技(应用技术版),2014,10(7):325-327. [3] 邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002. [4] 邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,1987: 110-11. [5] Zhang J.Improvement of Grey Forecasting Model and Its Application[J].Xian University of Technology,2008,24(3):120-122. [6] Dang Y,Liu S,Chen K.The GM Models That x(n) Be Taken as Initial Value[J].Kybernetes,2004,33(2):161-164. [7] Liu Q L.The Grey Forecasting Model of the International Tourist of Henan[J].Henan Science,2010,28(3):187-190. [8] 单锐,王淑花,高东莲,等.基于时间序列模型与灰色模型的组合预测模型的研究[J].燕山大学学报,2012,36(1):79-83.
点击查看大图
计量
- 文章访问数: 167
- HTML全文浏览量: 42
- PDF下载量: 5
- 被引次数: 0