Performance Prediction of Dew-point Evaporative Cooling Chiller Based on BP Neural Network
-
摘要: 本文针对传统蒸发冷却冷水机组的设计缺点,不能对机组实际运行情况全面考虑,量产前优化设计复杂、成本投入大等问题。通过借助神经网络对非线性动力学系统的预测能力,建立露点间接蒸发冷却器性能的预测模型,并对网络模型进行训练与仿真,以供参考。Abstract: This paper aims at the design shortcomings of the traditional evaporative cooling chillers, such as the failure to take the actual operation of the chillers into full consideration, the complexity of the optimization design before mass production and the large cost input. The prediction model of dew point indirect evaporative cooler was established by using neural network to predict the nonlinear dynamic system, and the network model was trained and simulated.
-
Key words:
- BP neural network /
- evaporative cooling /
- chiller /
- predictive analysis
-
[1] 黄翔,孙铁柱,汪超.蒸发冷却空调技术的诠释(1)[J].制冷与空调,2012,12(2):1-6+14. [2] 黄翔.蒸发冷却空调技术发展动态[J].制冷,2009,28(1):19-25. [3] 麦索特森科.用于露点蒸发冷却器的方法和板装置[P].中国:ZL02828060.1,2001-09-27. [4] 黄童毅,何林,郭庆,等.基于BP神经网络的空调性能预测研究[J].环境技术,2019,37(4):100-103+114. [5] 张峰,李苏泷.基于BP神经网络的建筑空调负荷预测[J].智能建筑与智慧城市,2019(7):34-35+41. [6] 李朝阳.露点间接蒸发冷却空调系统的应用研究[D].西安:西安工程大学,2020.
点击查看大图
计量
- 文章访问数: 62
- HTML全文浏览量: 5
- PDF下载量: 3
- 被引次数: 0