Research and Modeling of Energy Consumption Prediction Technology for Colleges and Universities
-
摘要: 为规范绿色校园建设,推进校园建筑能耗绿色经济运行管理,提高绿色校园运行管理的经济性、科学性、规范性,住建部出台《绿色校园评价标准》国家标准,在能源与资源管理评价指标中,建模预测及针对性管理是一种有效的管理方法。本文针对高等学校建筑能耗预测及节能管理需求,从建筑电耗入手,经过对电耗消费数据的采集与统计,借助机器学习数据预测技术构建建筑物电耗回归模型,形成高校各种类型建筑物的电能消耗预测模型,为绿色校园运行、建设提供技术基础。Abstract: In order to standardize the construction of green campuses, promote the green economic operation and management of energy consumption in campus buildings, and improve the economic, scientific, and standardized operation and management of green campuses, the Ministry of Housing and Urban-Rural Development has issued the national standard Evaluation Standards for Green Campuses. Among the evaluation indicators, modeling forecasting and targeted management are an eff ective management method. This paper aims at building energy consumption forecasting and energy-saving management needs of colleges and universities, starting with building power consumption, collecting and statistics of power consumption consumption data, using machine learning data prediction technology to construct a building power consumption regression model to form various types of buildings in colleges and universities The forecasting model of electric energy consumption provides a technical foundation for the operation and construction of a green campus.
-
Key words:
- prediction /
- building power consumption model /
- green campus /
- neural network
-
[1] 住房城乡建设部.建筑节能与绿色建筑发展“十三五”规划[S].2017. [2] 中华人民共和国住房和城乡建设部.国家机关办公建筑和大型公共建筑能耗监测系统建设技术导则[S].2008. [3] Karatasou S,Santamouris M,Geros V.Modeling and predicting building's energy use with artificial neural networks:methods and results[J].Energy and Buildings,2006,38:949-958. [4] 张全,刘渺,凌振华,等.钢铁企业能耗预测系统的设计[J].冶金动力,2006(2):67-70. [5] Bruhns H,Steadman P,Herring H.A database for modeling energy use in the non-domestic building stock of England and Wales[J].Applied Energy,2000,66(4):277-297. [6] 赵超,林思铭,许巧玲.基于GM-RBF 神经网络的高校建筑能耗预测[J].南京理工大学学报,2014,38(1):48-53. [7] 赵超,戴坤成,王贵评.基于 KPCA -WLSSVM 的建筑能耗预测模型[J].土木建筑与环境工程,2015,37(5):109-115. [8] 李俊.基于分项计量系统的建筑能耗拆分与节能潜力分析研究[D].重庆:重庆大学,2008. [9] 杨柳,侯立强,李红莲,等.空调办公建筑能耗预测回归模型[J].西安建筑科技大学学报(自然科学版),2015,47(5):707-711. [10] Harrje D T,Grot R A.Instrumentation for monitoring energy usage in buildings at Twin Rivers[J].Energy & Buildings,1978,1(3):293-299.
点击查看大图
计量
- 文章访问数: 221
- HTML全文浏览量: 56
- PDF下载量: 15
- 被引次数: 0